
AD-RI61 58 IMPROVEMENT CURVES PRODUCTION 
RATE AND OPTIMAL 

/
CONTRACTOR BEHAVIORCU) CINCINNATI UNIV OHSD CAME'T Ai 2SE£P 85

UNCLASSIFIED F/G 13/8 NL

MEl.



h!

Iii I 0 Illmm 1112.5
LL

11111.5 . .____6
III1 Illl __--' inIg .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

,%

. . .

. . . . . . . . . . . . . . . . . ...-... ...'.-.,.,.,.....,- '.-.'-"."." 
- '..,. ..... ..",, ,- ,',-.-. '-....-. .-.- -].. ..

*. . . . . . . . . . .. . 4 . 4 * 4'-
. . . . . . . . . . . . . . . . .... . ., - i . ' - . . .- - ' . '" . L . . ,r . . . . - . . . - i . - -' - , , . ' . - "- - - ; - , - . - . - . ' . -. " - - - ' " - . ;



Lfl0o
V ID

Improvement Curves, Production Rate,
And Optimal Contractor Behavior

by

Jeffrey D. Camm
Dept. of Quantitative Analysis and Information Systems

University of Cincinnati
Cincinnati, Ohio 45221

Thomas R. Gulledge, JR.
Dept. of Quantitative Business Analysis

Louisiana State University
Baton Rouge, Louisiana 70803

Norman Keith Womer
Dept. of Economics
Clemson University

Clemson, South Carolina 29631

Presented at the
19th Annual Department of Defense

Cost Analysis Symposium
Xerox Training Center
Leesburg, Virginia

September 17 - 20 1985 D T IC
ELECTE
DEC 3 185

.. ,s.D
B

AppovW tol public :releczs.
= DibUtio UaIiMite-A~

* - -- -- -11 21785 044



ABSTRACT

There has been much interest in recent years in the
relationships among learning, production rate, and program
costs. These relationships are of particular interest in
military acquisitions research where, because of the nature
of the funding process, the government must assess the cost
impact of numerous production rate changes. One approach
that is often used to analyze the problem is an empirical f
application of the - Alchian cost function. "' This -Peee" s.hw-
provides constructive criticism of the economic analyses
that are often applied to this very difficult managerial

-.problem. .
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INTRODUCTION

There has been much interest in recent years in the
relationships among learning, production rate, and program
costs. These relationships are of particular interest in
the military acquisition of made-to-order equipment. At the

. -outset of a weapon system program, a tentative monthly
production schedule for the life of the program is
negotiated between the contracting parties. This planning
schedule covers the life of the program, but formal
contractual agreements between the Department of Defense and
manufacturers usually cover only annual delivery
requirements. Since annual funding allocations are
characterized by political uncertainties, there is often a
need to deviate from the planned production rate during the
production phase of the program. Coincident with these rate
changes, new cost estimates are required to support contract
negotiations and additional funding requests.

There are many proposed methodologies for assessing
the cost impact of a production rate change. One of the
more popular approaches is an application of the Alchian
[1, 2] cost function. Even within this framework there is
very little agreement about the relationships among
learning, production rate, and program cost. While some
studies, for example, Gulledge, Womer, Tarimcilar [11] and
Womer and Gulledge [15] make assumptions concerning the cost

impact of the above factors in developing models of the
optimal contractor behavior, others (e.g., Smith [14],
Large, et. al [12], Bemis [3, 4], Cox and Gansler [8],
Crouch [91, Cox, et. al. [71, Bohn and Kratz [61) address
the problem directly by attempting to statistically estimate
the above influences. In these latter studies no attempt is
made to model contractor behavior in the analytical
relations. The purpose of this paper is to illustrate the
problems that follow from ignoring contractor behavior when
developing models of production programs.

ESTIMATING COST IMPACTS

The learning curve, first formulated by Wright [17], is
an empirically specified relationship that yields declining
unit costs with increases in cumulative output. In recent
years the more commonly used terminology has been
"improvement curve." The improvement curve allows for
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reductions in cost that are due to other factors in addition
to repetition (learning). Gold [10] includes changes in
product design, product mix, technology, facilities, etc. in
this listing of other factors. Learning and improvement
curves are described mathematically as

z = X()

where

Z the average cost of the units produced during some
period of time t,

0 = a constant, commonly called the first unit cost,

O1 = a parameter describing the slope of the
quantity/cost curve,

Xlt = cumulative quantity produced through time t.

Studies attempting to ascertain the relationships among
production rate, learning, and program costs often use the
following augmented model [2, 3, 4, 7, 8, 9, 12, 14]:

"Zt = a0oXlt aX2ta
2

where

S2t = some measure (usually a proxy) for production rate
during time period t,

= 2 = a parameter describing the slope of the rate/cost
curve.

Some researchers (e.g., Bohn and Kratz [6]) call equation
(2) the "rate analysis curve model."

The parameters in equation (2) are estimated from the
log-linear form of the relationship using linear regression
or directly from (2) using nonlinear regression.
Unfortunately both of these techniques often are plagued
with statistical problems due to the collinearity between
the independent variables, X and X2. The source of this
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collinearity may be reasoned as follows. Often
made-to-order production programs are characterized by
initial production at a low rate with a gradual buildup in
production rate throughout the program. In fact, given a
learning curve, if the resource use rate does not decline,
production rate must increase during the program. As a

- result sequential observations on cumulative quantity can be
highly correlated with production rate. This probably
explains the conclusion by Large, et. al. [12], that the
influence of production rate could not be estimated with
confidence. More recent studies have also been unable to
significantly measure the influence of production rate.
Both positive and negative estimates of 82, the slope of the
rate/cost curve, have been obtained. Assuming that an
increase in rate requires an increase in resources, a
positive slope for the rate/cost curve implies decreasing
returns to the variable resources. That is, an increase in
production rate causes an increase in required resources
(and hence unit cost). A negative slope implies increasing
returns since an increase in rate requiring an increase in
resources decreases unit cost.

There are many applications where estimates of the
parameters in equation (2) are provided. For example, Bemis
[3] provides a table of estimates for many defense items.
The estimated values for the quantity slope (8) and the
rate slope (82) are presented in Table 1. Notice that all
of the estimated values for 82 are less than zero. The
estimates for tactical missile programs presented by Cox and
Gansler [8] are presented in Table 2. While the Bullpup and
Tow estimates seem reasonable, the Sparrow and Sidewinder
estimates have 82 < 0.

Table 1. Values of 8I and 82 estimated by Bemis [3].

System 81 82

Aircraft A -.4521 -.0365
Aircraft C -. 1959 -.3310
Aircraft D -.1811 -.5564
Aircraft E -.1440 -.5735
Aircraft F -.2076 -.8034
Aircraft G -.2515 -.2969
Aircraft H -.4266 -.1297
Helicopter -.2550 -.1633
Jet Engine A -.4150 -.1203

.
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Table 1 (continued)

System 81 82

Jet Engine B -.4860 -.1600
Missile G&C -.1219 -.7515
Ordnance Item A -.1828 -.0439
Radar Set A -.1031 -.1714
Radar Set B -.0160 -.1408

Note: Six additional items were included in Bemis'
data summary. These were not included
because in four cases the rate slope was not
provided, and in two cases the quantity slope
was not provided.

Table 2. Estimates of and 8 for missile programs as
presented by Cox and ansler

System 82 1

Sparrow (1st source) -.0218 -.2413
Sparrow (2nd source) -.1156 -.1943
Bullpup .0058 -.2810
Tow .0101 -.0130
Sidewinder -.2881 -.0663

As discussed by Cox and Gansler [8], different signs
for 829 even if statistically significant, are not
necessarily contradicting. In the short-run, both
increasing and decreasing returns can exist. Furthermore,
even if the data indicate falling unit cost as rate
increases, this does not necessarily imply increasing
returns to the variable factors. The firm could be
producing in the region of diminishing returns on the
short-run cost surface, but the dominating learning
(cumulative quantity) effect could be causing unit costs to
decline.

There are also additional problems with the formulation
described by equation (2). Cox and Gansler [8] and Bohn and
Kratz (6] use lot size as a proxy for production rate.
However, the time required to produce a lot often changes
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over the program's life. This is true in much of the data
that these authors have analyzed, namely the C141 airframe
program, the F102 airframe program, the Black Hawk
helicopter program, and the F4 airframe program. For
example, lot sizes of 15 and 20 are not good proxies for
production rate if the time horizons for the two lots are 12
and 16 months respectively.

It is now possible to precisely state the purpose of
this paper. As noted, many researchers [2, 3, 4, 6, 7, 8,
9, 12, 14] have examined the model presented in equation
(2). These models are currently being used by the military;
e.g., the model presented in [6] is currently being used by
the U.S. Air Force Systems Command for planning purposes.
We will use this same model, combined with an assumption
about contractor behavior, to show that some of the
parameter estimates that have been obtained for equation (2)
imply that the contractor should produce all units at the
very end of the production program. We also note that if
the parameters of equation (2) are estimated from models
which include optimal contractor behavior (as in [15]), the
resulting estimates are consistent with actual observed
behavior.

CONTRACTOR BEHAVIOR

Elsewhere [11] we have analyzed a model of the same
form as equation (2) with the assumption of decreasing
returns to the variable resources; i.e., 82 > 0. Here we
show that if 82 0, then in the presence of learning,
0<81<1 , optimal contractor behavior results in producing the
output for the entire program either at the beginning or at
the end of the production time period. Since this is
inconsistent with observed and logical behavior, we conclude that
82 must be positive if the model at equation (2) is to be
relevant.

This proof does not imply that our model is right and
the practitioners are wrong. In fact, we are using the
practitioner's model. Our point is the following: When
using models like equation (2), there are appropriate
modeling procedures that will yield parameter estimates that
fall within the admissible ranges (see reference [15]).

Since Z is the average unit cost for period t,
discounted program cost may be expressed as

'a
t -' .: ¢ -' -' '. " - . - - - - . . .. ., .. . - . .. . .- -• .- .. . . • • . . . , . ,-..-
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t ,,
°

T 81 8+1
= t

2L t=l 8oXlt x2
t  (~~

where r is a discount rate. The variables of equation (3)
are connected by the stage transformation functions

-. Xl l = Xl - X t t --1, .. .T (4)

and the boundary conditions

X = 0, (5)

and

X = V. (6)

For major weapon systems programs, the wording of the

contract is an important determinant of firm behavior. The

assumption is that the contract is structured so as to

induce cost minimizing behavior by the contractor. This

might be in the form of either a firm fixed price contract,

cost-plus incentive fee, or award fee contract. Cost

minimization is not automatic with these contracts; see

Boger, Jones and Sontheimer [5] for a discussion of the

problems of constructing contracts with incentives for cost

minimization. In particular we assume that the contractor

is motivated to minimize discounted contract cost by

choosing production rate in each of the time periods. The

contractor's problem is

T ai 1 2+] t

Minimize C E X X /(l+r)
0 it 2t I1rt;1

subject to:

X = 0, (7)

XT =V,
.1

;'-. ... ' '," .. - .,, . -, .,... . ..... - -.. .. ,. ....... ,. . ..- . . . .. . . . . - .
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a problem in dynamic programming. This problem is of the
same form as that analyzed in reference [10].

There we show how to solve the problem if a2 is greater
than zero. If -1<a2<0 as estimated for almost all the
systems in Tables 1 and 2, then the solution to (7) takes a
particularly simple but unrealistic form. The dynamic
programming problem may be stated as a sequence of static
optimization problems using the recursion equations of
dynamic programming as presented by Nemhauser [13]. In this
case they are

~1 ~2'
fl (XII) = min oX X2 1 2/(l+r), (8)

x =xl 1
21 11

ft (Xlt) min 0oX It X2t /(l+r) (9)
O 2t Xlt

for t = 2, 3, ..., T with XIT = V. The problem at equation
(8) is solved as

f* (Xx) = +oXI + /(l+r). (10)

Therefore the problem at stage 2 is

f2 (X12) = min 0X 1 )2 x22+ l (11)
."S O 22 X 12

+ B0(X1 2-X2 2) /(+r).

Differentiating with respect to X yields

22

df2 = 1 2  2

dX22= a0(02+I)X1 2  X22  /(l+r) 2  (12)

S1~ 2. 80 (al+B2 +1)(X 1 2 -X2 2 ) /(I+r).

If B +a +1 ! 0, as is the case for Aircraft F in Table
1, then he derivative is positive over the entire range
0X 225X 12. In this case the solution to equation (11) is

.22
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X^2=0 ; that is, no production in period 2. If ++>0
tgien equation (11) equals zero in the interval and the
second-order conditions must be examined.

The second derivative is

d~f2 82f221

dX22= a0(8 2+I)8 2X 12  22 /(+r)2

22

+ aO( 1+a2+1) (8 1+8 2 )(X 1 2 -X 2 2 ) /(l+r). (13)

But, if a2 is negative then, since a is negative, both
terms of equation (13) are negative over the entire range
0:X 22X That is, f2 attains an interior maximum over the
interva lbut the minimum must be at one of the end points.
Substituting the endpoints into equation (11) shows X22=x12
to be the minimum.

In the first case, +82+1<0 and X =0, the optimal
value of f2 is 22

; 81+82+1
f(12) = 80X1 2  /(1+r), (14)

and the objective function for stage 3 is

(X mi 8 X a2382+1 /(l+r) 3  (15)f3(13) =l 0X13 2

O<X23X 13
81i+8 2+1

+ ao(X13-X2 3) /(l+r).

In the second case

81+82+1

f2 (X12) = oX12 /(l+r) 2 , (16)

and the objective function at stage 3 is

f3 (X13) = min 80X 3 /812+1I(1+r) (17)
313 23 13

+ 80 (X13-X23) /(1+r)

0 1 2
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The objective functions at equations (15) and (17) clearly
yield the same solutions as equation (11). That is if

+21 ! 0 then X* = 0 and if +1 >0 then X* 0 and
223 1223

ii + 2+1 > 0 then X* = X
1 223 13*

Since all the other stages in the problem are similar,
the solution to the problem is clear. If aI+ 2+1 ; 0, the
entire program requirement, V, should be produced in period
1; and if 81+B2+1 > 0, the entire program requirement should
be produced in period T. This behavior is in dramatic
contrast to the rf:sults reported in [11] which does tend to
conform to observed contractor behavior where 2 is assumed
to be positive. Similar results can be derived by applying
continuous time optimal control theory models and examining
their second order conditions. The general relations among

0these models and others are explored in [16].

CONCLUSION

The combined influence of improvement and production
rate on cost is still a topic that requires much additional
research. Most previous modeling attempts must be
interpreted with extreme care because they suffer from
severe statistical problems. If there were no data problems
(e.g., engineering change orders), and production rate could
be measured accurately, the regression equation may be a
valid tool for prediction purposes. However, the attempt to
make policy statements using the estimates from equation (2)
alone is futile.

In terms of production planning, a contractor certainly
would not plan to operate at a less than optimal rate if
cost minimization is Induced by the contract. In many
actual production programs planned production has exceeded
actual production. Only the inability of the contractor to
deliver on cost and on schedule has resulted in decreased
production. In view of the results of this paper, it would
seem that the above phenomena could imply that contractors
are producing at greater than optimal rates given fixed
facilities, so that diminishing returns to the variable
resources exist throughout the program after some start-up
period. Again it must be noted that this does not imply
that the average cost per unit would have to rise as output
rate is increased. The improvement effect could dominate
the rate effect and average cost per unit could decline.

......................................
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Finally, it can be argued that the model is flawed
because it doesn't explicitly consider capacity constraints
or progress billing. This is irrelevant for the results
presented in this paper. Equation (2) is presently being
used by the Air Force. Therefore, statements about the
appropriateness of equation (2) are statements about Air
Force planning. In any case, the results of this paper are

valid even in the absence of a capacity constraint. Using
the estimation procedure presented in [15], we have obtained

estimates with the appropriate signs for the F-4, F-102,
C-141, T-38, and Blackhawk programs.

The type of analysis presented in this paper does not
solve the government's problem of how to ascertain the cost
impact of production rate changes. However, it does suggest
that models based on equation (2) alone are not the answer
to the problem. These results should be noted and studied
since the government has developed and most likely will use
equations such as those analyzed in this paper.
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